Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor.
نویسندگان
چکیده
A diet high in total fat (HF) reduces hippocampal levels of brain-derived neurotrophic factor (BDNF), a crucial modulator of synaptic plasticity, and a predictor of learning efficacy. We have evaluated the capacity of voluntary exercise to interact with the effects of diet at the molecular level. Animal groups were exposed to the HF diet for 2 months with and without access to voluntary wheel running. Exercise reversed the decrease in BDNF and its downstream effectors on plasticity such as synapsin I, a molecule with a key role in the modulation of neurotransmitter release by BDNF, and the transcription factor cyclic AMP response element binding protein (CREB), important for learning and memory. Furthermore, we found that exercise influenced the activational state of synapsin as well as of CREB, by increasing the phosphorylation of these molecules. In addition, exercise prevented the deficit in spatial learning induced by the diet, tested in the Morris water maze. Furthermore, levels of reactive oxygen species increased by the effects of the diet were decreased by exercise. Results indicate that exercise interacts with the same molecular systems disrupted by the HF diet, reversing their effects on neural function. Reactive oxygen species, and BDNF in conjunction with its downstream effectors on synaptic and neuronal plasticity, are common molecular targets for the action of the diet and exercise. Results unveil a possible molecular mechanism by which lifestyle factors can interact at a molecular level, and provide information for potential therapeutic applications to decrease the risk imposed by certain lifestyles.
منابع مشابه
Neurotrophic Effects of Swimming and Crocin Consumption on the Rats with Obesity Induced by a High-fat Diet
Introduction: Obesity is known as a multifactorial physical disorder. On the other hand, regular sport exercises and crocin consumption have beneficial effects on obesity. In this regard, the present study aimed to investigate the effect of eight weeks of swimming training with crocin consumption on neurotrophic factors in the heart tissue of obese rats. Methods</strong...
متن کاملChanges of Interleukin-6 and brain-derived neurotrophic factor levels following acute plyometric training among inactive men
ABSTRACT Introduction: Brain-Derived Neurotrophic Factor (BDNF) plays an important role in transmission of nerve impulses, plasticity, growth, and generally in the health of nervous system. Interleukin-6 (IL-6) is involved in immune and inflammatory responses and is produced by immune cells, fibroblasts, endothelial cells, skeletal muscles, and fat tissues. The aim of this study ...
متن کاملP36: Role of Brain-Derived Neurotrophic Factor in Pathogenesis and Treatment of Post-Traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is a syndrome causing from a severe traumatic happening that leads to threatened death or injury. PTSD is associated with changes in limbic, hippocampal, and prefrontal cortical region function due to changes in synaptogenesis, dendritic modifying, and neurogenesis. Changes in neuron in PTSD patients result from pathophysiological disturbances in inflammato...
متن کاملInvestigating the Protective Effect of an Interval Training on Neutrophilic Factors of BDNF and CDNF in Rats Fed with High-fat Foods
Background and Aim: Exercise targets the secretion of brain-derived neurotrophic factors and has a major impact on the overall health of the brain. The present study aimed to investigate the protective effect of a period of interval training on neutrophilic factors of BDNF and CDNF in rats fed with high-fat foods. Materials and Methods: In this experimental study, 42 male Wistar rats were rando...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 123 2 شماره
صفحات -
تاریخ انتشار 2004